Tuesday, 11 March 2014

Dynamic-Programming Solution to the 0-1 Knapsack Problem

 

Let i be the highest-numbered item in an optimal solution for W pounds. Then SS - {i} is an optimal solution for W - wi pounds and the value to the solution S is Vi plus the value of the subproblem.
We can express this fact in the following formula: define c[i, w] to be the solution for items  1,2, . . . , i and maximum weight w. Then

 0if i = 0 or w = 0
c[i,w]  =c[i-1, w]if wi ≥ 0
 max [vi c[i-1, w-wi], c[i-1, w]}if i>0 and w ≥  wi


This says that the value of the solution to i items either include ith item, in which case it is vi plus a subproblem solution for (- 1) items and the weight excluding wi, or does not include ith item, in which case it is a subproblem's solution for (- 1) items and the same weight. That is, if the thief picks item i, thief takes vi value, and thief can choose from itemsw - wi, and get c[- 1, - wi] additional value. On other hand, if thief decides not to take item i, thief can choose from item 1,2, . . . , i- 1 upto the weight limit w, and get c[- 1, w] value. The better of these two choices should be made.
Although the 0-1 knapsack problem, the above formula for c is similar to LCS formula: boundary values are 0, and other values are computed from the input and "earlier" values of c. So the 0-1 knapsack algorithm is like the LCS-length algorithm given in CLR for finding a longest common subsequence of two sequences.
The algorithm takes as input the maximum weight W, the number of items n, and the two sequences v = <v1v2, . . . , vn> and w = <w1w2, . . . , wn>. It stores the c[ij]values in the table, that is, a two dimensional array, c[0 . . n, 0 . . w] whose entries are computed in a row-major order. That is, the first row of c is filled in from left to right, then the second row, and so on. At the end of the computation, c[nw] contains the maximum value that can be picked into the knapsack.


Dynamic-0-1-knapsack (v, w, n, W)
FOR w = 0 TO W
    DO  c[0, w] = 0
FOR i=1 to n
    DO c[i, 0] = 0
        FOR w=1 TO W
            DO IFf wi ≤ w
                THEN IF  vi + c[i-1, w-wi]
                    THEN c[iw] = vi + c[i-1, w-wi]
                    ELSE c[iw] = c[i-1, w]
                ELSE
                    c[i, w] = c[i-1, w]

The set of items to take can be deduced from the table, starting at c[n. w] and tracing backwards where the optimal values came from. If c[i, w] = c[i-1, w] item i is not part of the solution, and we are continue tracing with c[i-1, w]. Otherwise item i is part of the solution, and we continue tracing with c[i-1, w-W].

Analysis
This dynamic-0-1-kanpsack algorithm takes θ(nw) times, broken up as follows: θ(nw) times to fill the c-table, which has (+1).(+1) entries, each requiring θ(1) time to compute. O(n) time to trace the solution, because the tracing process starts in row n of the table and moves up 1 row at each step.

No comments:

Post a Comment

 

FACEBOOK PAGE

SKETCHES & PAINTINGS